Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  41
 Total visitors :  7653321

Recombination hotspots in soybean [Glycine max (L.) Merr.]
Friday, 2023/06/23 | 08:18:28

Samantha McConaughyKeenan AmundsenQijian SongVince PantaloneDavid Hyte

G3 (Bethesda). 2023 Jun 1;13(6):jkad075. doi: 10.1093/g3journal/jkad075.

Abstract

Recombination allows for the exchange of genetic material between two parents, which plant breeders exploit to make improved cultivars. This recombination is not distributed evenly across the chromosome. Recombination mostly occurs in euchromatic regions of the genome and even then, recombination is focused into clusters of crossovers termed recombination hotspots. Understanding the distribution of these hotspots along with the sequence motifs associated with them may lead to methods that enable breeders to better exploit recombination in breeding. To map recombination hotspots and identify sequence motifs associated with hotspots in soybean [Glycine max (L.) Merr.], two biparental recombinant inbred lines populations were genotyped with the SoySNP50k Illumina Infinium assay. A total of 451 recombination hotspots were identified in the two populations. Despite being half-sib populations, only 18 hotspots were in common between the two populations. While pericentromeric regions did exhibit extreme suppression of recombination, 27% of the detected hotspots were located in the pericentromeric regions of the chromosomes. Two genomic motifs associated with hotspots are similar to human, dog, rice, wheat, drosophila, and arabidopsis. These motifs were a CCN repeat motif and a poly-A motif. Genomic regions spanning other hotspots were significantly enriched with the tourist family of mini-inverted-repeat transposable elements that resides in <0.34% of the soybean genome. The characterization of recombination hotspots in these two large soybean biparental populations demonstrates that hotspots do occur throughout the soybean genome and are enriched for specific motifs, but their locations may not be conserved between different populations.

 

See https://pubmed.ncbi.nlm.nih.gov/36999557/

Fig. 1.

Genome wide recombination rates in two biparental populations and transposable elements associations. The outer ring represents the average biparental populations by physical distance along chromosomes for Williams 82 x PI479752 and Williams 82 x Essex. a) Directly under the physical distance, ring purple displays the recombination rates in cM/Mbp (y-axis). b) The next circle in orange represents a density plot of retrotransposon (class I). c) The circle in blue represents a density plot of transposable elements (class II). d) Transposable class II mite stowaway element frequencies are in green. e) TE Class type II MITE/Tourist element frequencies are in dark blue. f) The inner circle represents heterochromatic regions in black and euchromatic regions in white.

 

Back      Print      View: 164

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD